Chapter 3B

Discrete Random Variables




Random Variables

» A random variable is a function that assigns a real number to
each outcome in the sample space of a random experiment.

» Notation:

- An rvis typically denoted by an uppercase letter, such as X.

- After the data s collected, the measured value is denoted by a
lowercase letter, such a x = 70. Xand x are usually shown in italics,
e.g., AX=x).




Continuous vs. Discrete RVs

» A discrete random variable is a rvwith a finite (or countably

infinite) range. They are usually integer counts.
- Number of scratches on a surface.

- Proportion of defective parts among 100 tested.
- Number of transmitted bits received in error.

» A continuous random variable is a rvwith an interval (either
finite or infinite) of real numbers for its range. Its precision
depends on the measuring instrument.

- Electrical current and voltage.

- Physical measurements, e.g., length, weight, time, temperature,
pressure.



Some DRV examples

» A phone system for a business contains 48 lines. Let X denote the

number of lines in use. Then, X can assume any of the integer values
O through 48.

- The system is observed at a random time. If 10 lines are in use, then x = 10.

» Define the random variable Xto be the number of contamination
particles on a wafer.

- The possible values of X are the integers 0 through a very large number, so we
write x > 0.

» We could also describe the random variable Y as the number of chips
made from a wafer that fail a final test.

> If there can be 12 chips made from a wafer, then we write 0 < y < 12.




Discrete Probability Distributions

» A random variable X associates the outcomes of a random
experiment to a number on the number line.

» The probability distribution of the random variable Xis a

description of the probabilities associated with the possible
numerical values of X.

» A probability distribution of a discrete random variable can be:

> A table or list of the possible values along with their probabilities.
> A graph from that table.

- A formula that is used to calculate the probability in response to an input of
the random variable’s value.




Discrete Distribution Example

» There is a chance that a bit £
transmitted through a digital oSl
transmission channel is
received in error. 0.2916 : /0;8306001
0.0486 ® o o
» Let X'equal the number of R

bits received in error of the

. P(X=0) = 0.6561
next 4 transmitted.

P(X=1)= 0.2916
P(X=2) = 0.0486

» The associated probability P(X=3)= 0.0036
distribution of X'is shown as P(X=4) = 0.0001
a graph and as a table. 1.0000




Probability Mass Function (PMF)

For a discrete random variable X
with possible values x;,X,, ... X

n!

a probability mass function is a function such that:

(1) f(x)=0




Discrete Distribution Example

» In a semiconductor
manufacturing process, 2
wafers from a lot are sampled.
Each wafer is classified as pass
or fail. Assume that the
probability that a wafer passes
is 0.8, and that wafers are
independent.

» The random variable Xis
defined as the number of wafers
that pass.

Table 3-1 Wafer Tests

Outcome
Wafer #
1 2 X Probability
Fail Fail O 0.04
Fail Pass 1 0.16
Pass Fail 1 0.16
Pass Pass 2 0.64
1.00
Probability 0 0.04
1 0.32
Mass
. 2 0.64
Function
1.00




PMF Example
» Let the random variable X denote the e ———
number of wafers that need to be

analyzed to detect a large particle. P(X=1) 0.1 0.1
» Assume that the probability that a wafer P(X=2) 0.9*0.1 0.09
contains a large particle is 0.1, and that .
the wafers are independent. P(X=3) 0.94%0.1 0.081
P(X=4) 0.93*0.1 0.0729
» Determine the probability distribution of
X.
- Let p denote a wafer for which a large
particle is present & let a denote a wafer in
which it is absent. P(p) = 0.1, P(a)=0.9 . A formula (PMF)
0 Th}e sample space is: S = {p, ap, aap, aaap, P(X=x) = 0.9%1(0.1)

o ;Ir:he range of the values of Xis: x =1, 2, 3,




Cumulative Distribution Function (CDF)

» The cumulative distribution function can be built from the probability
mass function and vice versa.

The cumulative distribution function of a discrete random variable X,
denoted as F (x), Is:

F(x)=P(X <x)= Zf

X< X

For a discrete random variable X, F (x) satisfies the following properties:

1) F(x)=P(X<x)=> f(x)

(2) 0<F(x)<1

(3) Ifx<y,then F(x)<F(y)
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CDF Example

» Going back to example from slide 6,
we can express the probability of
three or fewer bits being in error,
denoted as AX < 3).

» The event X < 3 is the union of the

mutually exclusive (disjoint)
events: X=0, X=1, X=2, X=3.

» From the Table:

» AX < 3) =PX=0) + P(X=1) + AX=2) +
P(X=3) = 0.9999

X = 3) =P(X<3)-P(X<2)=0.0036

™
AN\ N\
A\ ARR L& 2
AW\ B
A\ AN
AN\ N
LAY AN
O\ AU
A\ \ ks

Mass Cumulative
X P(X=x) P(X<x)
0 0.6561 0.6561
1 0.2916 0.9477
2 0.0486 0.9963
3 0.0036 0.9999
4 0.0001 1.0000

1.0000
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Numbers to describe our distributions

» The mean is a measure of the center of a probability
distribution.

» The variance is a measure of the dispersion or variability of a
probability distribution.

» The standard deviation is another measure of the dispersion.
It is the square root of the variance.
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Mean
The mean or expected value of the discrete random variable X,

denoted as x or E( X)), is

p=E(X)=2 x-f(x)
The meanj( E(X), is the:

1. Probability-weighted average of the possible values of X.
2. “Center of Mass”
3. Most common way to characterize the center of the distribution.

- The mean value may, or may not, be a given value of x.
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Expected Value Calculation

» From a previous example,

there is a chance that a bit EpEn VETE

transmitted through a X 0 X0

digital transmission 0 0.6561 0

channel is an error. 1 02916 0.2916
2 0.0486 0.0972

» Xis the number of bits

3 0.0036 0.0108

received in error of the 4 o oo
next 4 transmitted.

EX]= 0.4036

Calculate the mean
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Variance of an RV

The variance of X, denoted as o or V (X ), is
o? =V (X)=E(X =) =X (x=p)" - f (x)5 X £ (x) =

p=> xf(x) and XZf(x)l\Kr:r truths. X

V(X)=Y(x-u) f(x)is the definitional formula

X

:ZX:(xz —2yX+y2)f (x)
:lexzf (X)_ZﬂZX:Xf (x)+yZZX: f(x)
:lexzf (X)—2p% + 11

x*f (x)—u is the computatiorfal formula
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Variance in Computations

» One property of the Expected value operator is:
EIhG)] = ) h(x) * £ (x)
» SO we can write our computational definition of Variance as:
> XS (x) =4

<=>
VIX]=E[X2]-E[X]?

Note: A X?) = [E(X)]?

16



Standard Deviation

» To find a Standard deviation, We just take the square root of
the variance

The standard deviation of X, denoted as o 1S
o =V (X)
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Example of mean and variance

» Going back again to slide 6, there is a chance that a bit

transmitted through a digital transmission channel is an error. X
is the number of bits received in error of the next 4 transmitted.

Use a table to calculate the mean & variance.

Expected Value

Definiational Formula

Computational Formula

X f(x) x*f(x) X—H (X—M)A2 (X=u)A2*f(x) XA2 XA2%f(X)
0 0.6561 0 -0.4 0.16 0.104976 0 0
1 0.2916 0.2916 0.6 0.36 0.104976 1 0.2916
2 0.0486 0.0972 1.6 2.56 0.124416 4 0.1944
3 0.0036 0.0108 2.6 6.76 0.024336 9 0.0324
4 0.0001 0.0004 3.6 12.96 0.001296 16 0.0016
E[X]= 0.4 VIX]= 0.36 E[XA2]= 0.52
V[X]= 0.36

Using V[X] = E[X?]-E[X]?
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Some Special Discrete Distributions

» Sometimes we can use specific distributions to model
situations

» Some important distributions we will cover are:
> Binomial
> Poisson

» Some other important ones to be familiar with:
- Geometric
- Negative Binomial
- Hypergeometric

19



Binomial Distribution

» To Model a situation with the Binomial Distribution we
must have:

Fixed number of trials (n).

Each trial is deemed a success or failure. (Bernoulli trials)

The probability of success in each trial is constant (p).

The outcomes of successive trials are independent.

(0]

(0]

(0]

o
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Binomial Distribution

» Let X be a binomial random variable that equals the number of
trials that result in a success with parameters 0 < p< 1 and n =
o, 1, ...

» Denoted: B(n,p)
 fG) =Clp*(1-p) "and F(x) = Ty, f(X)
» Measures

° M = E[X] = n*p
> 0% = V[X] = n*p(1-p)
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Binomial Distribution Shapes
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Ways to solve Binomial problems

» Table from your book :(
» Pencil and Paper :|

» Graphing in Minitab :)

» Excel ;) 1)
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Binomial example

» Samples of water have a 10% chance of containing a pollutant.
Assume that the samples are independent with regard to the
presence of the pollutant. Find the probability that, in the
next 18 samples, exactly 2 contain the pollutant.

» Let X denote the number of samples that contain the
pollutant in the next 18 samples analyzed. Then Xis a
pinomial random variable with p = 0.1 and n = 18.

P(X =2)=C¥(0.1)°(0.9)" =153(0.1)" (0.9)" =0.2835

0.2835 = BINOMDIST(2,18,0.1,FALSE)
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Binomial example cont.

» Determine the probability that at least 4 samples contain the
pollutant. B(18,0.1).

P(X >4) Zcm 0.1)(0.9)""
=1-P(X < 4)
=1—i0§8(o.1)x(o.9)18‘x
- 0.008

0.0982 =1 - BINOMDIST(3,18,0.1, TRUE)

» Lets take a look at graphing this in Minitab
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Binomial example cont.

» Graph of P(X=4) for
B(18,0.1)

0.30

» Steps:

- Go to graph menu —
Probability Distribution Plot

> Select Single —Choose

Probability

Binomial, enter parameters .

- To select desired shaded
area double click on bars of

graph 0.00-

> Click on the shaded area tab
and enter what you would
like to shade

Distribution Plot
Binomial, n=18, p=0.1

0.25

=
P
L=

=
e
un

0.05 -

0.09820
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Binomial example cont.

» Now determine the probability that 3 < X' < 7. B(18,0.1)

Distribution Plot
Binomial, n=18, p=0.1

7
P(3<X <7)=)C*(0.1)(0.9)" " =0.265

X=

P(X S?)—P(X 3SZ)

Probability

0.2660=BINOM.DIST.RANGE(18,0.1,3,7)

&
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Transmission example Binomial

» Recall the previous example about the number » y = EX) = np = 4*0.1 = 0.4
of transmitted bits received in error.

» We could use: n=4and p=0.1. » 02 =V(XX) = np(1-p) = 4*0.1%0.9 = 0.36

» Find the mean, variance & std dev of this » 0 =5D(X) = 0.60

binomial random variable

» Compare to earlier:

\

Expected Value Definiational Formula Computational Formula
X f(x) x*f(x) X—M (X-M)A2 (X=p)A2*f(x) XA2 XA2*f(x)
0 0.6561 0 -0.4 0.16 0.104976 0 0
1 0.2916 0.2916 0.6 0.36 0.104976 1 0.2916
2 0.0486 0.0972 1.6 2.56 0.124416 4 0.1944
3 0.0036 0.0108 2.6 6.76 0.024336 9 0.0324
4 0.0001 0.0004 3.6 12.96 0.001296 16 0.0016
E[X]= 0.4 V[X]= 0.36 E[XA2]= 0.52
V[X]= 0.36

28



Binomial — Poisson

» As the number of trials (n) in a binomial experiment increases to
infinity while the binomial mean (np) remains constant, the PMF of the
binomial distribution becomes the PMF of the Poisson distribution.

Let A=np=E(x), sop=4/n

(X =x)=(})p @-p)""
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Poisson Distribution

» In general, the Poisson random variable Xis the number of
events (counts) on a fixed interval.

»  Examples:
- Particles of contamination per wafer.
> Flaws per batch.
- Calls at a customer service center per hour.
- Power outages per year.
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Poisson Distribution

» The random variable Xthat equals the number of events in a Poisson
process is a Poisson random variable with parameter A > 0.

» Denoted: P(\)

» f(x) = e " A" andF(X) = e\ Zioe—i!}\
X1
» Measures

> M=E[X]=A=V[X]=0"
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Poisson Graphs
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Poisson Example

» For the case of the thin copper wire, suppose that the number of
flaws follows a Poisson distribution of 2.3 flaws per mm. Let X
denote the number of flaws in T mm of wire. Find the probability of

exactly 2 flaws in T mm of wire.

-2.3 2
P(X =2)="2% _ 0265
21

In Excel
0.2652 = POISSON.DIST(2, 2.3, FALSE)
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Poisson Cautions

» It is important to use consistent units in the calculation of
Poisson:
> Probabilities
- Means
> Variances

» Example of unit conversions:
- Average # of flaws per mm of wire is 3.4.
- Average # of flaws per 10 mm of wire is 34.
- Average # of flaws per 20 mm of wire is 68.
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Poisson Example cont...

» Determine the probability of 10 flaws in 5 mm of wire.

» Now, let X'denote the number of flaws in 5 mm of wire.

E(X ) = A =5mm- 2.3 flaws/mm =11.5 flaws

10
115115 0113
10!

P(X =10)=¢

In Excel
0.1129 =POISSON.DIST(10, 11.5, FALSE)
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Poisson Example cont...

» Determine the probability of at least 1 flaw in 2 mm of wire.

» Now let X denote the number of flaws in 2 mm of wire.
> Note that P(X > 1) requires o terms. Can’t do that computationally

E(X)=4=2mm- 2.3 flaws/mm =4.6 flaws
P(X >1)=1-P(X =0)=1-e** === 0.9899

In Excel
0.9899 =1- POISSON.DIST(O, 4.6, FALSE)

36



Well-Known Discrete Distributions

» Poisson
> The number of events (x) likely to happen on an interval with rate A

» Hypergeometric

> When drawing from a set of N items with D items of interest, what is the probability of drawing (x) items of interest in
a set of n items (w/o replacement), ?

» Uniform
> The probability of n equally likely outcomes

These distributions all deal with series of independent Bernoulli trials:

» Binomial
> Probability of x successes in n trials

» Geometric
> Number of trials, x, until a (15t) success

» Negative Binomial
> Numbers of trials, x, until r successes occur
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Comparing Discrete Distributions

Consider a deck of card. These are the type of questions

»  Uniform

- What is the probability of drawing the Ace of Spades?
» Binomial

> In 5 draws, with replacement, what is the probability of drawing 2 aces?
»  Geometric

> Number of draws with replacement until you get an Ace
» Negative Binomial

- What is the probability that in your last 5 hands you have had two aces?
» Hypergeometric

- When drawing a 5 card hand (w/o replacement), what is the probability you get a pair of Aces?
» Poisson

- The rate of getting an ace per 100 hands is A, what is the probability of getting 500 aces in 1000
hands?

38



